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Arsinothricin, an arsenic-containing
non-proteinogenic amino acid analog of glutamate,
is a broad-spectrum antibiotic
Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2,

Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5,

Barry P. Rosen1 & Masafumi Yoshinaga1

The emergence and spread of antimicrobial resistance highlights the urgent need for new

antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan.

Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We

demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta-

mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and

Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per-

vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every

new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial

arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation

of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without

arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the

potential for development of a new class of organoarsenical antimicrobials and ArsN1

inhibitors.
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Arsenic is the most pervasive environmental toxic element1.
Here we describe how bacteria harness arsenic to create a
potent broad-spectrum antibiotic. New antibiotics are

urgently needed because the emergence of resistance has rendered
nearly every clinically used antibiotic ineffectual. Human tuber-
culosis, the top global infectious disease killer, which is caused by
Mycobacterium tuberculosis, has become even more difficult to
treat due to the drug resistance2. The World Health Organization
declares multidrug-resistant tuberculosis a global public health
crisis, calling for a pressing need for development of new and
innovative antibiotics3. In addition to M. tuberculosis, the World
Health Organization recently issued a global priority pathogen list
of antibiotic-resistant bacteria that pose the greatest threat to
human health to guide and promote research and development of
new antibiotics4.

The use of arsenicals as antimicrobial and anticancer agents is
well-established5,6. The first synthetic antimicrobial agents were
the organoarsenicals atoxyl (p-aminophenylarsenate, also known
as p-arsanilic acid) and salvarsan (arsphenamine). While sal-
varsan is no longer in clinical use, the organoarsenical melarso-
prol, developed in 1949, is still recommended by the World
Health Organization for treatment of second-stage Trypanosoma
brucei sleeping sickness7. Atoxyl and the related synthetic aro-
matic arsenicals roxarsone (4-hydroxy-3-nitrophenylarsenate)
and nitarsone (4-nitrophenylarsenate) are antimicrobials used for
the prevention of Coccidia and Histomonas infections in poultry8.
Although no longer in wide use in the United States, roxarsone is
still produced and utilized worldwide. Finally, arsenic trioxide
is currently the treatment of choice in humans for all-trans
retinoic acid unresponsive acute promyelocytic anemia9.

Here we demonstrate that a recently discovered arsenic-
containing natural product, arsinothricin (2-amino-4-(hydro-
xymethylarsinoyl)butanoate, AST) (Fig. 1a), produced by the rice
rhizosphere microbe Burkholderia gladioli GSRB0510, has broad-
spectrum antibiotic activity. Biosynthetic AST is a mimetic of the
Streptomyces antibiotic L-phosphinothricin (2-amino-4-(hydro-
xymethylphosphinyl)butanoate or L-PPT) with an arsenic in
place of the phosphorus of L-PPT (Fig. 1b). L-AST and L-PPT are
non-proteinogenic amino acid analogs of L-glutamate (Fig. 1c)
and act through inhibition of glutamine synthetase. Most toxic
arsenicals contain trivalent As(III). AST is unusual in being a

highly toxic pentavalent organoarsenical. It is chemically unre-
lated to other organoarsenicals and has the potential to be the
progenitor of a new class of organoarsenical antibiotics. With
every new antibiotic, resistance inevitably arises. The enzyme PPT
N-acetyltransferase (PAT) confers resistance to PPT by acetylat-
ing its α-amino group. A curious observation has been that many
arsenic resistance (ars) operons have an arsN1 gene that encodes
a pat ortholog. Why an enzyme for PPT resistance should be in
an ars operon was a mystery. The identification of AST as a
natural product suggested that the biological function of ArsN
could be to act as an AST resistance. Here we show that ArsN1
acetylates both AST and PPT but with higher affinity for AST,
indicating that ArsN1 is an AST-selective N-acetyltransferase.
We crystallized ArsN1 and solved the apo and substrate-bound
structures. This knowledge can be utilized to design new and
novel drugs that evade or inhibit resistance mechanisms.

Results
AST is a broad-spectrum antibiotic. To determine whether AST
has antibiotic activity, we examined its ability to inhibit growth of
bacteria using environmental isolates. AST was equally effective
against both Gram-negative and Gram-positive bacteria (Fig. 2a).
Each species was inhibited to the same degree by 25 μM AST and
400 μM L-PPT, except for B. gladioli GSRB05 and Pseudomonas
putida KT2440. B. gladioli GSRB05 is the producer of AST10, so it
is not unexpected that this strain might be resistant to the anti-
biotic it produces. As discussed below, the arsN1 gene confers
resistance in P. putida KT2440. Our results demonstrate that AST
is a broad-spectrum antibiotic effective against both Gram-
negative and Gram-positive bacteria. In Escherichia coli, AST is
considerably more inhibitory than inorganic As(III) and is similar
to that of highly toxic trivalent methylarsenite (MAs(III))
(Fig. 2b). Given that, in general, pentavalent arsenicals are rela-
tively benign and much less toxic compared to trivalent species11,
this is a striking result. To our best knowledge, except thiolated
species6, AST is the only known pentavalent arsenic species that
exhibits high toxicity.

AST inhibits glutamine synthetase. The mechanism of action of
L-PPT is irreversible inhibition of bacterial glutamine synthe-
tase12. L-PPT also inhibits plant glutamine synthetase, which is
the basis for its use as the broad-spectrum systemic herbicide
Glufosinate13. Because of the structural similarity with PPT
(Fig. 1b), it was reasonable to propose that the target of AST is
also bacterial glutamine synthetase. We compared the effect of
AST and L-PPT on purified E. coli glutamine synthetase activity.
The Km of glutamine synthetase was found to be 2.7 ± 0.6 mM for
L-glutamate, consistent with the previous determination12. The
observed Ki values for AST and L-PPT are 0.3 ± 0.05 μM and
0.4 ± 0.15 μM, respectively, indicating that AST is as effective an
inhibitor of glutamine synthetase as is L-PPT.

AST is an effective antibiotic with pathogenic bacteria. Inhi-
bition of glutamine synthetase has been proposed to be a
potential therapeutic strategy against tuberculosis14. Pathogenic
mycobacteria, including M. tuberculosis, secrete large amounts of
an extracellular glutamine synthetase that is involved in synthesis
of the poly-α-L-glutamine layer, a cell wall component that is
found exclusively in pathogenic strains and considered essential
to their virulence15. In fact, L-methionine S-sulfoximine
(L-MSO) (Fig. 1d), the first glutamine synthetase inhibitor
described16, effectively inhibits M. tuberculosis growth both
in vitro and in vivo15,17. To examine the potential of AST as a
drug for tuberculosis, we analyzed the effect of AST on a related
pathogenic strain, M. bovis BCG, and compared it with L-PPT
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Fig. 1 Chemical structure of glutamate and analogs. a Arsinothricin
(AST); b phosphinothricin (PPT); c glutamate; d methionine sulfoximine
(MSO)
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Fig. 2 AST is a broad-spectrum antibiotic. a AST inhibits growth of both Gram-negative and Gram-positive bacteria. Strains were cultured in M9 medium in
the absence (black circles) or presence of 25 µM AST (red squares) or 400 µM L-PPT (blue triangles) as described in Methods, and growth was estimated
from the A600nm after 24 h. Data are the mean ± SE (n= 3). b Pentavalent AST is more toxic than trivalent As(III). The toxicity of AST (triangles) was
compared with MAs(III) (squares) and As(III) (circles) in E. coli AW3110 grown in M9 medium. Growth was estimated from A600nm after 24 h. Data are
the mean ± SE (n= 3). Dark- and light-colored symbols represent means and individual data points, respectively. c Effect of AST on mycobacterial growth.
Cultures ofM. bovis BCG were inoculated at an initial density of 105 cells/ml and then incubated at 37 °C in a 5% CO2 atmosphere for up to 4 weeks in the
absence (Control, circles) or presence of the indicated concentrations of GS inhibitors L-MSO (squares), L-PPT (triangles) or AST (diamonds). Growth was
estimated from A600nm. Data are the mean ± SE (n= 3). Dark- and light-colored symbols represent means and individual data points, respectively. d Effect
of AST on carbapenem-resistant E. cloacae. Cells were cultured in M9 medium in the absence (Control) or presence of 25 µM AST, L-PPT or L-MSO, with
growth estimated from the A600nm after 24 h. Data are the mean ± SE (n= 3). e Cytotoxicity of AST in human monocytes. Human THP-1 cells were
incubated in the presence or absence of the indicated concentrations of As(III) (circles) or AST (squares) for 24 h, and viability was determined using a
3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay, as described in Methods. Data are the mean ± SE (n= 4). Dark- and light-colored
symbols represent means and individual data points, respectively
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and L-MSO (Fig. 2c). AST inhibits mycobacterial growth at
concentrations comparable to L-MSO and is a much better
inhibitor than L-PPT. AST also effectively inhibits growth of
carbapenem-resistant Enterobacter cloacae (ATCC BAA-2341),
which belongs to the highest priority category in the World
Health Organization global priority pathogens list3, whereas
other glutamine synthetase inhibitors have no effect on growth of
E. cloacae (Fig. 2d). Among the glutamine synthetase inhibitors
examined, only AST effectively inhibits growth of both Myco-
bacterium and Enterobacter pathogens, which strongly suggests
that AST is a useful lead compound for potential development of
new antimicrobial drugs against antibiotic-resistant pathogens.
Importantly, AST is much less cytotoxic to human monocytes
compared with inorganic arsenite (Fig. 2e). This low cytotoxicity
further supports the potential of AST as a lead compound for
drug development.

PpArsN1 confers resistance to arsinothricin. Bacterial resistance
to L-PPT is conferred by phosphinothricin N-acetyltransferases
(PATs)18. These inactivate L-PPT by acetylation of the α-amino
group, which prevents binding to glutamine synthetase12. These
genes have been used to construct transgenic PPT-resistant
plants, allowing D,L-PPT to be used for weed control13. Many
bacterial ars operons have genes that encode putative GCN5-
related N-acetyltransferases19 (Fig. 3). These genes can be sorted
into two clades (Fig. 4). The genes in Clade 1 encode proteins
more closely related to phosphinothricin N-acetyltransferases,
whereas products of the genes from Clade 2 are more closely
related to glutamate N-acetyltransferases (N-acetylglutamate
synthases)20. We term the former arsN1 and the latter arsN2. In
this report we focus on arsN1. The arsN1 gene of P. putida
KT2440 (PparsN1, accession number AAN67541) was originally
termed phoN1 because it was shown to confer L-PPT resistance21.
The genome of P. putida KT2440 has two ars operons (ars1 and
ars2), and the ars1 operon contains the PparsN1 gene. Wild type
cells are L-PPT resistance, while cells with a deletion of both ars
operons (Δars1,2) are sensitive to L-PPT (Fig. 5a). Introduction of
PparsN1 into E. coli AW3110 confers L-PPT resistance, which
was consistent with previous studies21.

To date every characterized ars gene has been shown to have
an arsenic-related function, so it is unlikely that the primary
function of PpArsN1 is PPT resistance because PPT does not
contain arsenic. The prevalence of arsN genes in multiple ars
operons implies involvement in arsenic metabolism. It was logical
to propose that AST is the primary substrate of ArsN1. Parental
P. putida is resistant to AST, while P. putida Δars1,2 is sensitive
(Fig. 5b). E. coli AW3110 is similarly sensitive to AST, and
heterologous expression of PparsN1 confers resistance. These
results support our hypothesis that ArsN1 has the arsenic-related
function of AST resistance. Comparing the effect of L-PPT with
AST, both P. putida Δars1,2 and E. coli AW3110 show nearly
complete inhibition of growth by 20 μM AST, with 50%
inhibition at ~3 μM AST. In contrast, 100 μM L-PPT was
required to give 50% inhibition. The result indicates that AST is
at least 30-fold more effective as an antibiotic compared with
L-PPT.

PpArsN1 is an arsinothricin-selective N-acetyltransferase.
Crude extracts of cells of P. putida expressing PparsN1 have been
shown to acetylate PPT21. Here we demonstrate that purified
PpArsN1 exhibits phosphinothricin acetyltransferase activity
(Table 1). The glutamine synthetase inhibitor L-MSO is a poorer
substrate compared with AST (Fig. 1d). Purified PpArsN1 has 100-
fold higher affinity for AST compared with L-PPT, and 15-fold
higher catalytic efficiency (Kcat/Km), indicating that AST is the

physiological substrate of PpArsN1. The affinity and catalytic effi-
ciency of Streptomyces viridochromogenes phosphinothricin N-
acetyltransferase (SvPAT) with AST are similar with those of
PpArsN1. In contrast, SvPAT shows two orders of magnitude
higher affinity for PPT than PpArsN1. Thus, while ArsN1 is
selective for AST, SvPAT has similar affinity for both PPT and AST.

Crystal structure of PpArsN1. To elucidate the mechanism of
PpArsN1 resistance and its selectivity for AST, we solved the
structure of apo- and substrate-bound PpArsN1. The overall
conformation is a three-layer α/β sandwich fold (Fig. 6a), a typical
GCN5-related N-acetyltransferase fold22. PpArsN1 forms an
asymmetric homodimer in solution, as shown by the extensive
interactions of the subunits (Supplementary Figure 1) and size-
exclusion chromatography (Supplementary Figure 2), similar to
related N-acetyltransferases. The AST-bound PpArsN structure
shows that the L-enantiomer is the substrate of the N-acetyl-
transferase, which supports our assumption that L-AST is the
active form of the antibiotic (Supplementary Figure 3). PpArsN1
has two L-AST-binding sites, which are asymmetrically formed
by amino acid residues from both Chains A and B. Both binding
sites are composed of seven residues: four residues from Chain A
(Ile31a, Phe33a, Ala124a and Val158a) (Fig. 6b, green) and three
residues from Chain B (Arg75b, Ala76b and Arg77b) (Fig. 6b,
teal). L-PPT is bound in two conformations. In one conformation
(PPT-1) (Fig. 6c), the orientation of L-PPT is similar to that of
L-AST (Fig. 6b), although the sets of amino acid residues used
by PpArsN1 to interact with each chemical moiety in L-PPT are
slightly different from those that interact with the corresponding
chemical moiety in L-AST. In these structures, the predicted
distance between the α-amino group of AST/PPT and the sulfur
atom of acetyl coenzyme A (AcCoA) is too long to initiate
acetylation (Supplementary Figure 4). Another conformation of
L-PPT (PPT-2) (Fig. 6d) is similar to that of L-PPT observed in
the previously reported coenzyme A- and L-PPT-bound ShPAT
(PAT from Streptomyces hygroscopicus, also known as BAR)23.
Superimposition of these two conformations of L-PPT-bound
PpArsN1 demonstrates the two different binding modes of sub-
strates in PpArsN1 (Fig. 6e). The arsenic atom of L-AST closely
overlaps the phosphorus atom in PPT-1 and PPT-2. The orien-
tation of PPT-1 is almost superimposable with that of L-AST. In
contrast, the orientation of PPT-2 is inclined at 120° towards the
AcCoA binding site with respect to those of PPT-1 and L-AST.
This brings the α-amino group of L-PPT closer to the sulfur atom
of AcCoA (Supplementary Figure 4), which is more favorable for
catalysis. Arg75a in Chain A of the apo-structure also shows two
conformations. One superimposes with the L-AST-bound
PpArsN1 structure, covering the substrate-binding channel,
whereas the other moves out of channel (Fig. 6f). The side chain
of Arg77b in Chain B also appears to cover and move away from
the substrate-binding site, allowing substrate access to the active
site. The two conformations of this residue in L-PPT-bound
PpArsN1, for both PPT-1 and PPT-2, are quite similar to those in
L-AST-bound PpArsN1 (Supplementary Figure 5). Arg75 and
Arg77 from each subunit appear to form gates that controls
substrate access to both catalytic sites.

Discussion
Arsenic is the most ubiquitous environmental poison, and its
toxicity presented a challenge to the first organisms1. Arsenic is
and always has been the most prevalent toxic substance in surface
and subsurface waters and soil. To adapt to high arsenic con-
centrations in primordial waters, microbes evolved arsenic
detoxification mechanisms more than 2.5 billion years ago24. In
addition, microbes developed mechanisms to use arsenic for
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energy production25. So it is not unexpected that bacteria would
evolve pathways to use arsenic as an antibiotic to give them a
selective growth advantage over competitors26. Here we identify
the organoarsenical AST as a novel natural product with broad-
spectrum antibiotic properties synthesized by an environmental
isolate of Burkhoderia. Although the pathway of AST synthesis
is not known, the biosynthetic pathway of phosphinothricin

consists of more than twenty genes27, which suggests that the
pathway for AST synthesis will prove to be correspondingly
complicated.

As Paul Ehrlich, who synthesized the antimicrobial orga-
noarsenical salvarsan, predicted, drug resistance follows the drug
like a faithful shadow28. The arsN1 gene encodes an N-acetyl-
transferase that confers resistance to arsinothricin with high
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Fig. 3 Compilation of bacterial ars operons with arsN genes. Shown are representative ars operons containing arsN genes (black fill). GenBank accession
numbers are given in “Methods” section
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selectivity over the related antibiotic phosphinothricin. The arsN1
gene is present in many species of soil bacteria, which implies that
AST is synthesized by other members of microbial communities,
and that AST will be found to be present in soil and water with
even moderate concentrations of arsenic. Indeed, we predict that
the extensive distribution of arsN1 genes reflects an equally wide
occurrence of AST producers, an eminently testable hypothesis.

We propose that the small difference in the As–O and P–O
bond lengths allows L-AST to bind more tightly to PpArsN1 than
L-PPT. Known differences between arsenic and phosphorus
coordination are instructive. In arsenate the As–O bond length is
1.69 Å compared with a P–O bond length of 1.52 Å in phos-
phate29. In the periplasmic phosphate binding protein of Halo-
monas sp. GFAJ-1 this minute difference in bond length distorts a
low-barrier H-bond and allows a 4500-fold selectivity for phos-
phate over arsenate30. L-AST and L-PPT differ from inorganic
arsenate and phosphate in having C-As and C-P bonds replacing
O–As and O–P bonds. In L-AST-bound PpArsN1, the bond
lengths of As–CG, As–CE, As–OEA, As–OEB are 2.0, 1.9, 1.9 and
2.0 Å, respectively. In L-PPT, the bond lengths of P–CG, P–CE,
P–OEA and P–OEB are 1.8, 1.8, 1.6 and 1.5 Å, respectively.
Although small, these differences are critical for binding affinity.
Both the arsenic atom in L-AST and the phosphorus atom in L-
PPT are in a tetrahedral geometry with four coordinations. The
volume of the L-AST tetrahedron is 3.00 Å3, compared with 1.86
Å3 for L-PPT. We predict that this substantial difference in
substrate volume affects hydrogen bonding, hydrophobic and van

der Waal contacts between the tetrahedral substrates and enzyme
that accounts in part for the 100-fold higher affinity of ArsN1 for
L-AST compared with L-PPT.

The high selectivity of PpArsN1 for AST suggests that arsN1
genes evolved in response to the environmental challenge
presented by AST producers. The results of phylogenetic
analysis suggest that ArsN1 genes can be further sorted into
two subclades, with PAT and MAT branching off from both
ArsN1 subclades (Supplementary Figure 6). This implies that
ArsN1 is the common ancestor of those N-acetyltransferase
members and that the arsenical antibiotic AST is the most ancient
of this class of antimicrobials. Given that SvPAT has similar
affinity for both PPT and AST (Table 1), we speculate that PAT
homologs evolved from ArsN1 to increase affinity for PPT in
response to PPT emergence without losing affinity for AST. The
ten residues involved in L-PPT binding in ShPAT are conserved
in SvPAT, while three are conservatively replaced in PpArsN1
(Supplementary Figure 7). These minor differences in amino acid
residues involved in substrate-binding between ArsN1 and PAT
may lead in part to the differences in their substrate selectivity.
AST was only recently identified, so we might predict that other
organoarsenical antibiotics exist. There are genes in ars operons
for which functions have not been found; these might be resis-
tance mechanisms against unknown natural products containing
arsenic.

One concern is that ArsN1 resistance to AST could be a lim-
iting factor for future clinical use. However, the effectiveness of
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AST could be extended if it could be used in combination with
ArsN1 inhibitors31,32. To this end, analysis of the structure of
ArsN1 is enlightening. Given the shorter distance between the
amino group of PPT and the acetyl group of AcCoA in the PPT-2
conformation compared with the longer distance in the PPT-1
conformation (Supplementary Figure 4), it is reasonable to pro-
pose that PPT-2, and not PPT-1, is a conformation that the
enzyme assumes during catalysis. The logical next question is
why L-PPT binds to PpArsN1 in both the PPT-1 and the PPT-2
conformations. The α-amino group of L-PPT must be deproto-
nated for acetylation to occur. In ShPAT, like the other GCN5-
related N-acetyltransferases, a conserved catalytic Glu88 acts as a

general base, interacting with the α-amino group of L-PPT via a
water molecule. The enzyme then uses the water molecule as the
proton shuttle to catalyze the deprotonation step23. In PpArsN1,
however, the residue corresponding to Glu88 of ShPAT is Asp85
(Supplementary Figure 7). The side chain of Asp85 is not long
enough to catalyze deprotonation of the α-amino group of L-PPT
in the PPT-2 conformation. In that conformation, no water
molecule interactions were found between the α-amino group of
L-PPT and Asp85 of PpArsN1 (Supplementary Figure 8a, 9.7 Å).
In contrast, in the PPT-1 conformation, the distance between the
α-amino group of L-PPT and Asp85 is shorter (Supplementary
Figure 8a, 4.9 Å), allowing Asp85 to form a coordination with the
amino group of L-PPT via a water molecule. This suggests that
substrate deprotonation is catalyzed by Asp85 in the PPT-1
conformation. A similar water molecule bridge was also observed
between AST and Asp85 in AST-bound PpArsN1 (Supplemen-
tary Figure 8b). Based on these results, we propose that PpArsN1
has two separate sites for substrate deprotonation and acetylation.
In this hypothesis, PpArsN1 first captures the substrate in the
deprotonation site, as seen in the PPT-1 conformation (Fig. 6c),
where the α-amino group of the substrate is deprotonated by
Asp85 (Supplementary Figure 8a). The deprotonated substrate
then relocates to the acetylation site, as seen in the PPT-2 con-
formation (Fig. 6d), where the distance between the deprotonated
substrate to AcCoA is shorter (Supplementary Figure 4). This
allows nucleophilic attack on the carbonyl bond of the acetyl
group, promoting catalysis. Based on structural analysis, a similar
mechanism that uses separate sites for deprotonation and acet-
ylation of substrate has been proposed for L-glutamate N-acetyl-
transferase from M. tuberculosis33. A unique feature that
differentiates PpArsN1 from ShPAT is that the latter utilizes a
common site for both deprotonation and acetylation of the
substrate23.

With such knowledge obtained through our study, it may be
possible to develop ArsN1 inhibitors that can be used in com-
bination with AST to prevent resistance. In addition, from the
structure of the binding site, we can rationally propose syntheses
of more potent AST derivatives that bind to glutamine synthetase
with higher affinity or bind to ArsN1 with lower affinity. In
summary, we predict that AST may be the progenitor of a new
class of antibiotics.

Methods
Reagents. All reagents and enzymes were purchased from Sigma-Aldrich Co. LLC
(St. Louis, MO, USA), unless otherwise stated. Arsinothricin (AST) was purified
from cultures of B. gladioli GSRB05, as described previously10. The concentration
and purity of purified AST were determined by inductively coupled plasma mass
spectrometry (ELAN DRC-e; Perkin–Elmer, Waltham, MA, USA) and high pres-
sure liquid chromatography (series 2000, Perkin–Elmer) coupled to inductively
coupled plasma mass spectrometry. AST is assumed to be the L-enantiomeric form
based on the ArsN1 crystal structure with bound L-AST (vide infra). Commercial
phosphinothricin (PPT) and methionine S-sulfoximine (MSO) are the D,L- and
L-enantiomers, respectively. In the studies described below the concentration of D,
L-PPT was divided by a factor of 2 to give the concentration of the L-enantiomer,
the active form of the antibiotic13. Methylarsonous acid (MAs(III)) was prepared as
described previously34.

Bacterial strains. Escherichia coli strains DH5α (Promega, Madison, WI, USA)
and TOP10 (Invitrogen, Waltham, MA, USA) were used for gene cloning and
protein expression, respectively. E. coli strain W311035 and the ars operon deleted
derivative AW3110 (Δars)36, Pseudomonas putida KT2440 and the double ars
operon deleted derivative strain (Δars1,2)21, Burkholderia gladioli GSRB059,
Shinorhizobium meliloti Rm102137, Shewanella putrefaciens 200, Bacillus cereus
UW8538, Bacillus megaterium (ATCC 14581), Corynebacterium glutamicum
(ATCC 13032), Enterobacter cloacae (ATCC BAA-2341) and Mycobacterium bovis
BCG (ATCC 19274) were used for in vivo resistance assay.

Cloning, expression and protein purification. For gene cloning and protein
expression, E. coli cells were grown at 37 °C in lysogeny broth (LB) medium39

supplemented with 0.1 mg/ml ampicillin. For construction of a plasmid for
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Fig. 5 a PpArsN1 confers resistance to L-PPT (a) and AST (b). a Strains:
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Table 1 PpArsN1 is selective for L-AST over other glutamine
synthetase inhibitors

Substrate (50 μM) Specific activity (nmol s−1 mg−1 PpArsN1)

AST 49.6 ± 0.8
L-PPT 13.9 ± 1.9
L-MSO 2.1 ± 0.1

Enzyme Substrate Km (μM) Kcat (s−1) Kcat/Km

(M−1 s−1)

PpArsN1 AST 11 ± 3 1.7 ± 0.2 1.55 × 105

L-PPT 1000 ± 200 9.6 ± 0.9 0.10 × 105

SvPAT AST 12 ± 2 2.3 ± 0.1 1.92 × 105

L-PPT 47 ± 2 3.1 ± 0.0 0.66 × 105
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expression of arsN1 from P. putida KT2440 (PparsN1) (accession number:
AAN67541.1) in fusion with a six histidine tag at C-terminus, a 558-bp fragment
excluding the stop codon was PCR-amplified from total genomic DNA of P. putida
KT2440 by high fidelity PfuTurbo DNA polymerase (Agilent Technologies Inc.,
Santa Clara, CA, USA) using the forward primer 5′-CCAGCCATGGA-
TAGCGGAATCGATATTCG-3′ (NcoI site underlined) and reverse primer 5′-
CCAGAAGCTTACGAGGCACTGGGATTTGG-3′ (HindIII site underlined) and
then ligated into pBAD-Myc/His-A as an NcoI/HindIII digest, generating the

plasmid pBAD-PparsN1. The DNA sequence for pat, the gene encoding phos-
phinothricin N-acetyltransferase from Streptomyces viridochromogenes (Svpat)
(accession number: AAU00088.1) with six histidine codons inserted at the 3’ end
before the stop codon, was chemically synthesized by GenScript (NJ, USA) with 5′
NcoI and 3’ HindIII sites and cloned into the EcoRV site of pUC57-Kan (pUC57-
Kan-Svpat). The synthetic Svpat gene was cloned as an NcoI/HindIII digest from
pUC57-Kan-Svpat into pBAD-Myc/His-A, generating plasmid pBAD-Svpat. Cells
of E. coli TOP10 bearing pBAD-PparsN1 or pBAD-Svpat were grown in LB
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medium with shaking at 37 °C. At an A600nm of 0.5–0.6, L-arabinose was added as
an inducer at a final concentration of 0.2% (w/v). After 5 h, the cells were harvested
and stored at −80 °C until use. The frozen cells were thawed and washed once with
and resuspended in buffer A (50 mM morpholinopropane-1-sulfonic acid, pH 7.5,
containing 20 mM imidazole, 0.5 M NaCl and 20% (v/v) glycerol) (5 ml per gram
of wet cells). The cells were lysed by a one-time passage through a French pressure
cell at 20,000 psi and immediately mixed with 2.5 µl per g of wet cell of diiso-
propylfluorophosphate. The cell lysate was centrifuged at 40,000 rpm using a T865
rotor (Thermo Fisher Scientific, Waltham, MA, USA) for 60 min at 4 °C. The
supernatant solution was applied onto a Ni-NTA column (QIAGEN Sciences,
Hilden, Germany) at a flow rate of 1.0 ml/min and washed with 20 column
volumes (100 ml) of buffer A. Bound protein was eluted with buffer A containing
0.2 M imidazole, and the purity was assessed by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis40. Protein concentrations were estimated by the
Bradford assay by using bovine serum albumin as a standard. Fractions containing
the protein were pooled and concentrated using a 10 kDa Amicon Ultra centrifugal
filter (EMD Millipore, Billerica, MA, USA). The concentrated protein was rapidly
frozen and stored at −80 °C until use.

Glutamine synthetase assays. The activity of glutamine synthetase from E. coli
was measured using a coupled assay that determines formation of the product ADP
to oxidization of NADH41. The 1 ml reaction mixture contained 34 mM imidazole,
9 mM ATP, 1 mM phosphoenolpyruvate, 60 mM magnesium chloride, 19 mM
potassium chloride, 45 mM ammonium chloride, 0.25 mM NADH, 13 to 20 units
of L-lactic dehydrogenase and 8–14 units of pyruvate kinase. The reaction was
initiated by addition of glutamine synthetase at 0.2 nM, final concentration. The
decrease in A340nm was measured at 37 °C, and oxidation of NADH to NAD+ was
quantified using an extinction coefficient 6230M−1cm−1. The assays were per-
formed with concentrations of L-glutamate from 2 to 100 mM. Inhibition constants
(Ki) for AST and L-PPT were determined from the apparent Km of glutamine
synthetase calculated with three different concentrations of inhibitor. Activities
were corrected with the values from control assays without enzyme. Kinetic
constants were calculated using Sigma Plot (Systat Software, Inc., Sun Jose, CA).

N-acetyltransferase assays. The enzymatic activity of purified PpArsN1 was
measured from the rate of 5,5’-dithio-bis-2-nitrobenzoic acid reduction as
described previously with minor modifications42. The reactions were carried out in
20 mM Tris-HCl (pH 7.4), 1 mM ethylenediaminetetraacetic acid, 0.33 mM
5,5′-dithio-bis-2-nitrobenzoic acid, 0.2 mM acetyl coenzyme A (AcCoA) with
50 µM AST, PPT or MSO at 37 °C. The reactions were initiated by addition of
AcCoA, and the linear increase in A412nm was measured over the first 2 min. The
specific activity was determined using the molar extinction coefficient of 2-nitro-5-
benzoatic acid (14,150M−1 cm−1)42. Activities were corrected with the values from
control assays without enzyme. The kinetics of PpArsN1 and SvPAT for PPT and
AST were determined over a concentration range between 1 µM and 2 mM using
0.2 µM enzyme. Kinetic constants were calculated from a fit of the data to the
Michaelis-Menten equation43 using SigmaPlot.

Bacterial-resistance assays. Middlebrook 7H9 broth (Difco Laboratories Inc.,
Detroit, MI, USA) supplemented with 5 g bovine serum albumin, 2 g dextrose,
0.85 g NaCl and 0.05% tween 80 (Fisher Scientific International Inc., Pittsburg, PA,
USA) was used to culture M. bovis BCG. Mycobacterial cells were inoculated at a
density of 1.0 × 105 CFU/ml and horizontally cultured in the presence or absence of
the indicated concentrations of AST, L-PPT or L-MSO in an incubator humidified
at 37 °C under 5% CO2 for up to 4 weeks. Viable cells in each culture were
determined by A600nm. All other bacterial strains were grown in LB medium
overnight, following which the cells were centrifuged, washed with and resus-
pended in M9 medium39 to an A600nm of 0.04−0.06, with or without the indicated
concentrations of As(III), MAs(III), AST, L-PPT or L-MSO. M9 medium was
supplemented with 0.2% (w/v) citrate and 20 µg/ml uracil for P. putida strains,
while M9 medium supplemented with 0.2% (w/v) glucose was used for the other
bacterial strains. 0.1 mg/ml ampicillin and 0.2% (w/v) arabinose as inducer were
added to cultures of E. coli, as required. Resistance was determined from the A600nm

after 24 h. E. coli and B. megaterium were grown at 37 °C. Other bacterial strains
were cultured at 30 °C.

Cytotoxicity assays. Human acute monocytic leukemia THP-1 cells (ATCC TIB-
202TM) were seeded in a 24-well plate (Nalge Nunc International, Rochester, NY,
USA) with 300 µl of RPMI-1640 medium (Lonza, Basel, Switzerland) supplemented
with 10% (v/v) fetal bovine serum and 0.05 mM 2-mercaptoethaol at a density of
1.0 × 105 cells/well and cultured in a 5% CO2 humidified incubator at 37 °C. After
24 h, THP-1 cells were further cultured in the presence or absence of the indicated
concentrations of AST or As(III) for another 24 h, following which viability of cells
was determined by a 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide
assay44. 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide was added
to each well at a final concentration of 0.5 mM and the cultures were incubated for
3 h. The plate was then centrifuged at 400 × g, the cell pellets were lysed with 300 µl
of dimethyl sulfoxide to dissolve 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenylte-
trazolium bromide formazan. Cell viability was estimated from A570nm.

ArsN distribution and phylogenetic analysis. The prevalence of arsN (arsN1 and
arsN2, see Results) genes in ars operons was analyzed in representative organisms.
GenBank accession numbers of the following bacterial genomes are given in
parentheses. P. putida KT2440 (AE015451), Bacillus sp. GZT (LVVJ00000000),
Meiothermus chliarophilus DSM 9957 (AUQW00000000), Acidovorax sp. CF316
(AKJX00000000), Porphyrobacter mercurialis (JTDN00000000), Pseudomonas
syringae pv. syringae B728a (CP000075), Inquilinus limosus DSM 16000
(AUHM00000000), Sphingopyxis sp. KK2 (LYVN00000000), Sphingomonas
yabuuchiae (LDTF00000000), Pelomonas sp. KK5 (LYVQ00000000), Burkholderia
lata (CP000150), Rhodobacter sphaeroides ATCC17025 (CP000661), Rubrobacter
xylaniophilus DSM 9941 (CP000386), Mumia flava (JTDJ00000000), Roseiflexus
castenholzii DSM 13941 (CP000804), Ralstonia pickettii 12 J (AAWK00000000),
Rhizobium leguminosarum bv. viciae 3841 (AM236080), Burkholderia phytofir-
mans PsJN (AAUH00000000), Spirosoma panaciterrae DSM 21099
(ARFA00000000), Oxalobacteraceae bacterium AB_14 (ARMC00000000), Geoba-
cillus kaustophilus HTA426 (BA000043), Paenibacillus stellifer DSM 14472
(NZ_CP009286), Thermoflavimicrobium dichotomicum DSM 44778
(NZ_FORR01000002), Deinococcus aquatilis DSM 23025 (NZ_KB899704), Meio-
thermus terrae DSM 26712 (NZ_QXDL01000023). Multiple alignment of the
sequences of putative N-acetyltransferase orthologs was performed using T-
Coffee45 and BoxShade46. N-acetyltransferase sequences distributed in ars oper-
ons20,21 were defined as ArsN [P. putida KT2440 (WP_010952945), Bacillus sp.
GZT (WP_062922891), M. chliarophilus DSM 9957 (WP_027893731,
WP_027893733), Acidovorax sp. CF316 (WP_007857208), P. mercurialis
(WP_039093634), P. syringae pv. syringae B728a (YP_234588), I. limosus DSM
16000 (WP_026871525), Sphingopyxis sp. KK2 (WP_077145629), S. yabuuchiae
(WP_058746515, WP_058746517), Pelomonas sp. KK5 (WP_077035561), B. lata
(WP_011349260), R. sphaeroides ATCC 17025 (WP_011908437), R. xylanophilus
DSM 9941 (WP_011565797), M. flava (KHL15495), R. castenholzii DSM 13941
(WP_012120818), R. pickettii 12 J (WP_012429982), R. leguminosarum bv. viciae
3841 (WP_011652407), B. phytofirmans PsJN (WP_012431288), S. panaciterrae
DSM 21099 (WP_020601039) and O. bacterium AB_14 (WP_020703167),
G. kaustophilus HTA426 (BAD74878), M. terrae DSM 26712 (WP_119314079),
P. stellifer DSM 14472 (WP_038700913), T. dichotomicum DSM 44778
(WP_093227883) and D. aquatilis DSM 23025 (WP_019009361)]. N-acetyl-
transferase sequences distributed in phosphinothricin tripeptide biosynthesis gene
clusters27 were defined as phosphinothricin N-acetyltransferase (PAT) [Strepto-
myces hygroscopicus (P16426), Streptomyces viridochromogenes (WP_003988626),
Kitasatospora phosalacinea NRRL B-16230 (KP185121) and Actinobacteria bac-
terium OK074 (WP_082414639)]. N-acetyltransferases with higher selectivity for
PPT compared to MSO47-49 are also defined as PAT [Streptomyces coelicolor A3(2)
(CAB90987), Rhodococcus sp. YM12 (JQ398613) and Nocardia sp. AB2253
(BAG06876)]. N-acetyltransferases with higher selectivity on MSO compared to
PPT21,47,50,51 are defined as methionine sulfoximine N-acetyltransferase (MAT)
[E. coli K-12 (AAC74530), Salmonella enterica Typhimurium str. LT2
(NP_460549), P. putida KT2440 (WP_010955452) and Pseudomonas aeruginosa
PAO1 (AAG08251), Acinetobacter sp. ADP1 (Q6FBS8)]. N-acetyltransferases that
have similar activity on both PPT and MSO47 are also included [Geobacillus
kaustophilus HTA426 (BAD77205), Bacillus subtilis RO-NN-1 (AEP92705),
Paraburkholderia xenovorans LB400 (ABE30708, ABE34181), Staphylococcus
aureus USA300_FPR3757 (ABD22256) and Deinococcus radiodurans R1
(AAF10750)]. GenBank accession numbers of N-acetyltransferase orthologs are
given in parentheses. Phylogenetic analysis was performed to infer the evolutionary
relationship among the sequences of ArsN1, PAT and/or MAT from various
organisms. The phylogenetic tree was constructed using the Neighbor-Joining
method using MEGA X52. The statistical significance of the branch pattern was
estimated from a 1000 bootstrap53.

Crystallization and structure determination. Initial crystallization screening was
performed as described previously54 by the sitting-drop vapor-diffusion method55

using a variety of crystal screens from Hampton Research (Aliso Viejo, CA, USA),
Emerald BioSystems, Inc. (Bainbridge Island, WA, USA) and Jena Bioscience
GmbH (Jena, Germany) in 96-well plates (Corning Inc., Corning, NY, USA) at 293
K. Crystalline precipitates were obtained at 0.2 M sodium acetate, 0.1 M Tris-HCl,
pH 8.5, and 30% (w/v) PEG 4000. Diffraction quality crystals were grown using the
vapor diffusion hanging drop method in 24-well Linbro plates. The reservoir
solution (0.3 ml) consisted of 0.2 M sodium acetate, 0.1 M Tris-HCl and 20% (w/v)
PEG 6000, and the hanging drop contained 2 µl of 20 mg/ml of purified PpArsN1,
2 µl reservoir solution and 1 µl of 0.1 M ATP. Rod-shaped crystals, with approx-
imate dimensions of 0.1 × 0.05 × 0.05 mm, were obtained within a few weeks. The
PpArsN1-AST complex was prepared by adding 0.5 ml of 4.0 mM AST to 0.5 ml of
1 mM protein. PpArsN1-AST crystals were grown using vapor diffusion hanging
drop method. The hanging drop contained 2 µl of PpArsN1-AST complex and 2 µl
of reservoir solution. The reservoir contained 1.5 M sodium formate and 0.1 M
sodium acetate with pH 4.5. Thin plate-like crystals were obtained within a week.
The PpArsN1-PPT complex was prepared by adding 0.5 ml of 25 mM L-PPT to
0.5 ml of 1 mM protein. The PpArsN1-PPT crystals were also grown using the
same method and crystallization condition as used for the PpArsN1-AST crystals.
The crystals were harvested from the hanging drop using a cryoLoop, flash-frozen
in liquid nitrogen at 100 K and stored in liquid nitrogen. Ethylene glycol (20%, v/v)
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was used as cryoprotectant. X-ray data were collected on beamline 22ID at the
Advanced Photon Source), Argonne National Laboratory, using a MAR300HS
detector. The crystal-to-detector distance was 180 mm, and 180 images for
PpArsN1 crystal, 240 and 360 images for PpArsN1-AST and PpArsN1-PPT
crystals, respectively, were collected with 1° oscillations. The PpArsN1 diffraction
data were indexed and scaled using KYLIN56 and PpArsN1-AST and PpArsN1-
PPT data were indexed and scaled using HKL200057. The data processing statistics
are shown in Table 2. The PpArsN1 crystal diffracted to 2.16 Å resolution. The
crystal belongs to space group P43212 with cell dimensions a= b= 67.02 Å, c=
206.74 Å. The Matthews coefficient of 2.48 indicates that there are two molecules in
the asymmetric unit with 50.5% solvent. An initial homology model was con-
structed by molecular replacement with an acetyltransferase from P. aeruginosa
PA01 (PDB ID: 1YVO as a template with 32.3 % identity) using SWISS-MODEL58.
Molecular replacement was done using PHASER59 in the CCP4 suite60. The initial
R and Rfree were 35.0 and 40.0%, respectively. The structure was refined using
PHENIX61. The C-terminal extended residues were fitted in electron density using
COOT62. Water molecules were added at appropriate positions and refined. The
final R and Rfree are 23.7% and 26.6%, respectively. The PpArsN1-AST crystal
diffracted to 2.19 Å resolution and indexed with C121 space group with cell
dimensions a= 185.27, b= 141.74, c= 54.55 Å and β= 90.6°. The Matthews
coefficient of 2.54 indicates that there are six molecules in the asymmetric unit with
51.6% solvent. The PpArsN1-apo structure was used as a model for molecular
replacement. There are positive electron densities at the 9.0 and 16.0 σ level near
Arg77 in molecule A and B, respectively (Supplementary Figure 9). The density was
fitted with the L-enantiomer of AST, and the anomalous difference map confirmed
the presence of arsenic. The PpArsN1-PPT crystal diffracted to 2.66 Å resolution
and indexed with P1211 space group with cell dimensions a= 53.84, b= 142.69,
c= 178.31 Å and β= 89.9°. The Matthews coefficient of 2.45 indicates that there
are twelve molecules in the asymmetric unit with 49.8% solvent. The PpArsN1-apo
structure was used as model for molecular replacement. There are positive electron
densities between 6.5 and 9.0 σ level near Arg77 in molecule A–D, G–J (Supple-
mentary Figure 10). The density was fitted with two L-PPT molecules. The
structure were refined using REFMAC563 in the CCP4 suite60. The simulated
annealing refinement was done using PHENIX. The structure factor and coordi-
nates were deposited to the Worldwide Protein Data Bank (wwPDB, accession IDs:
5JTF (PpArsN1), 5WPH (PpArsN1-AST) and 6M7G (PpArsN1-PPT)). The
molecules were drawn with PyMol (Version 1.8 Schrödinger, LLC). Docking was
performed using AutoDockTools and AutoDock464.

Statistics. Assays of glutamine synthetase, N-acetyltransferase, bacterial resistance
and cytotoxicity were repeated at least three times. The data are presented as the
mean ± standard error (SE). No other statistical tests were performed.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Protein structural data have been deposited in the wwPDB under accession IDs 5JTF
(PpArsN1), 5WPH (PpArsN1-AST) and 6M7G (PpArsN1-PPT). The source data used to
generate the Figs. 2 and 5 are presented as Supplementary Data 1. Other data that
support the findings of the current study are available from the corresponding authors on
reasonable request.
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